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Abstract 

There exists a rather large amount of frequently eclectic assemblages [1]-[7] of interesting, useful 

and famous counterexamples. Often discovered by great mathematicians, they played an important 

role in the history of mathematics. A proper software can make them and related learning activities 

more understandable, visual and user-friendly. We consider three subjects that have a certain 

connection, and include famous counterexamples, named after their discoverers.  

1. Length of curve 

The following counterexamples motivate a correct definition of the notion length of curve. 

1.1. Segment. The Amount of wrinkles in model M1 (Fig.1) depends on parameter k. The blue and 

red polygonal chains2 present two sequential steps of wrinkling. Fig.1 illustrates:  

1. The length of these chains does not depend on k and remains equal to 2 . 

2. Both polygonal chains converge to the unit segment. 

 
               k = 0                       k = 1                       k = 2                      k = 3                      k = 10 

Figure 1 

Thus, the length of unit segment is not 1 but 2 !  

Exercise: “Prove” that length of unit segment “equals” to any L  1.  

                                                           
1 It is the third part in the series of papers “Counterexamples in Mathematics Education: Why, Where, and 

How? – Software aspect”.   
2 Defined by syntaxic construct polyline(X, Y, Z, index, amount, closed) as  

polyline(i*1/2^k,if(i%2,1/2^k,0),0,i,2^k+1,0) –blue, and 

polyline(i*1/2^(k+1),if(i%2,1/2^(k+1),0),0,i,2^(k+1)+1,0) – red. 

mailto:nodelman@hit.ac.il
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1.2. Circle. The Rolling Bridge at Paddington Basin in London3 with its triangular sections impressed 

us to model it with VisuMatica. 

This model M2 (Fig.2) consists of congruent isosceles right triangles and depends on two 

parameters: k – the amount of triangles, and t  [0, 1] – the folding stage.  

Students easily find the analogy with the case of polygonal chains converging to segment in 1.1. 

However, there is a visible difference:  

a) The length of the chain projection onto the x-axis (Fig.1) does not depend on k. 

b) The sum S of triangular bases remains unchanged while folding, but depends on k. It becomes 

clear while changing the value of k, but keeping t = 0. The length of the x-axis segment, 

occupied by triangles, grows as k grows. It is limited by and arbitrarily close to the length of 

a circle.  So, S
k 
lim = circle length. 

 

 

Figure 2. Upper row k = 10, lower row k = 100; from left to right: t = 0, 0.25, 0.5, 0.75, 1. 

 

Similarly to M1, the common length of polygonal chain, formed by the lateral sides of triangles is 

2 S and thus it converges to 2  (circle length). However, the lower row of Fig.2 illustrates the 

fact that both polygonal chains are converging to the circle. So, 

...!0limlim22limlim 


SSSS
kkkk                                    (1) 

Explanation of falseness of this sophism will provide a useful student activity.   

One can consider the length of a curve as the length of a segment, received as result of its 

straightening, and the curve itself – as result of bending of this linear segment.  

The following model M3 shows the “real” bending process and helps to understand the difference 

and the relation between S and circle length (Fig.3)4. The amount of sides-segments in the model is 

controlled by the parameter c, and the angle of the bended arc by k. 

 

 

                                                           
3 https://en.wikipedia.org/wiki/The_Rolling_Bridge 
4 In an advanced class, the discovering of involute trajectories of vertices during the folding process may 

become an interesting challenge.   

https://en.wikipedia.org/wiki/Paddington_Basin
https://en.wikipedia.org/wiki/London
https://en.wikipedia.org/wiki/The_Rolling_Bridge
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Pay students’ attention to the following: 

 

1. By changing the k value, we are folding a segment of the horizontal x–axis onto the curve. 

The already bended portion – the circular arc - becomes rainbow-colored, as well as its 

preimage – a segment of x-axis. The red involute emphasizes the correspondence. Moreover, 

the correspondent points on arc and segment have the same color. 

2. The c segments5, initially reclining separately and equidistantly on light-blue horizontal lines, 

become connected; thus forming the resulting regular polygon.   

3. The size of the horizontal light blue line and its involute does not depend on the amount of 

sides of the resulting folded regular polygon.  

                         

                        
Figure 3. Upper row c = 3, lower row c = 6 

One can ask students to: 

1. Compare the length of the side-chord of final regular polygon with the contracted arc. 

 

Figure 4 

2. Explain the meaning, relation and comparative lengths of segments and arc, referred by 

arrows 1...5, pointed to their middle in Fig.4.  

                                                           
5 These segments portray the bases of triangles, similar to Fig.2. We avoid drawing the backsides (wrinkles) 

to prevent mess of the image. 
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3. Explain, how this model illustrates the equality S
k 
lim = circle length. 

The next modelM4 illustrates numerically the discussed values6. As before, a here is the circle radius, 

and c – the amount of sides of the inscribed green regular polygon (Fig.5).  

                   c = 10                  c = 100  

         
Figure 5 

By increasing the value of c (Fig.5 shows cases of c = 10 and 100) and observing the corresponding 

changes of the values in the “expression/condition” view, students discover the correct tendencies.  

1.3. Arbitrary curve.  

1.3.1. We calculate the length of a polygonal chain by summing the lengths of its linear segments. 

Model M5 presents a straightforward example of a polygonal chain with an infinite length. The curve 

(Fig.6) consists of pink vertical segments [(1/n, 0), (1/n, 1/n)], where n = 1, 2, .., amount - called 

Verticals, connected by blue sloped segments [(1/(n + 1), 0), (1/n, 1/n)], called connectors. The model 

displays two values: length (Verticals) and length (connectors). By changing the value of parameter 

amount, one can see that the total length of each one of the segments’ sets, and the length of the curve 

(their sum), grows, but very slowly. It equals to 13.755236, when amount = 500.   

Recognizing harmonic series in the length (Verticals), students get a clear understanding that both: 

this value and the curve length tend to infinity. Moreover, any subcurve, defined on interval [0, a], 

where 0 < a ≤ 1 also has an infinite length. 

 
Figure 6 

                                                           
6 We use VisuMatica’s constructs multiline (…) and polyline (…) in M3 and M4 to define sequences of 

isolated segments and polygonal chains. 

https://en.wikipedia.org/wiki/Polygonal_chain
https://en.wikipedia.org/wiki/Summation
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Space filling curves provide much more interesting examples of curves with an infinite length. 

Consider the Hilbert curve, a well-known example of such a curve. Hilbert's principle is as follows. 

If the interval I can be continuously mapped to a square Q, then after dividing I into four congruent 

subintervals and Q into four congruent subsquares, each subinterval can be mapped continuously to 

one of the subsquares. Then each subinterval, in turn, can be divided into four congruent subintervals 

and each subsquare into four congruent subsquares, and so on. If this goes on indefinitely, then Q and 

I break up into 22n congruent copies for n = 1, 2, 3. Hilbert showed that it is possible to arrange 

subsquares so that the adjacent subintervals would correspond to adjacent subsquares with the 

common side, and so that the inclusion relation is preserved, i.e. if the square corresponds to an 

interval, then its subsquares correspond to the subintervals of this interval [8]. 

Model M6 implements this construction. Fig.7 displays the cited process for the few starting 

steps (1, 2, 3, 5, and 10). The spectrum-rainbow colored horizontal segment models interval I, and 

the unit square – the square Q. The subdivision squares are presented by the gridlines. Color codes 

expresses the mapping correspondence: the point with coordinate c on interval I and its image – point 

(x, y) in Q have the same color.  

Considering step-curves (polygonal chains) as approximations of the Hilbert curve7 one can see that 

their length - length (Hilbert) - grows very quickly8. However, it remains not clear whether this 

growth is limited or not, and thus, whether the Hilbert curve has an infinite length.  

            
                   a)                                                  b)                                               c) 

  
                    d)                                                  e)                                               f) 

Figure 7. Steps: a) 1, b) 2, c) 3, d) 5, e)-f) 10 

                                                           
7 Defined as an overloaded polyline that depends on steps. 
8 VisuMatica shows the following values: 1.5 (k = 1), 31.96875 (k = 5), 1023.999023 (k = 10) etc. 
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On the other hand, it is clear that the Hilbert curve fills the whole Q. It looks as even the “curve” in 

step 10 (Fig.7 e) completely fills out the square. Nevertheless, every rectifiable curve is a zero set, 

that is, it can be enclosed in a polygonal figure of an arbitrarily small area. Considering as such a 

figure F the set of all points distanced from the points of the curve by a distance not exceeding , the 

length of the curve can be understood as 


)(
lim

0

FS


, where S(F)  is the area of the figure F. The 

Hilbert curve has S(F)1. Hence, in sense of such definition, its length is infinite. 

Positions of both the small triangle above the colored interval and the circle on the 

approximation polygonal chain in Fig.7 depend on parameter c  [0, 1], and illustrate the 

correspondence f(c) = (x, y). The triangle points to a light green zone of a rainbow while the inner 

disk of the circle covers the accordant and thus light green part of the approximation chain. A small 

change of the c value leads to also small changes of positions and colors of triangle and the 

correspondent circle.  

The second pair of objects - the mouse and the square under the rainbow interval - illustrate 

the reverse correspondence. When the mouse points to a certain point of the curve, the square moves 

to the preimage of this point - a point with the same color on the interval9. We draw the students’ 

attention to the fact that smooth movement of the mouse along the curve leads to a smooth 

displacement of the square only in cases of       a) - d). In the case of e) sharp jumps in the position of 

the square clearly are observed at small displacements of the mouse, when it crosses the boundaries 

of zones that differ sharply in color. The explanation of this phenomenon is based on a comparison 

of the images of steps a) -e). 

Students discover two interesting facts: (a) although ALL steps represent a bijective 

correspondence10, the Hilbert curve itself is a result of only a surjective mapping of an interval onto 

a square, (b) and this mapping is continuous. 

1.3.2. Let us approximate a curve by a polygonal chain, defined by a finite number of points on the 

curve. The length of the approximation is the sum of lengths of linear segments. Increasing the 

number of sides while decreasing length will lead to better approximations. 

Curves, for which there exists L > 0 - an upper bound of lengths of such approximations, are 

called rectifiable. Their length is defined as the number L. Fig.8 presents model M7 that illustrates 

this definition. 

                                                           
9 VisuMatica shows the value of expression pointedColor(mouse), which is  c  [0, 1]. 
10 Fig.7 f) presents step 10 by polygonal chain with line width of one pixel.   

https://en.wikipedia.org/wiki/Polygonal_chain
https://en.wiktionary.org/wiki/Finite
https://en.wikipedia.org/wiki/Point_(geometry)
https://en.wikipedia.org/wiki/Summation


 The Electronic Journal of Mathematics and Technology, Volume 12, Number 3, ISSN 1933-2823 

359 

 

  

      

Figure 8 

The model includes the dark blue spiral “curve” defined as r = ,   [0, ] and five polygonal chains: 

 

a. Light green polylineEqArcs, defined as subdivision(curve, n, 1),  

with n segments, connecting arcs with equal lengths. 

b. Orange polylineEqParam, defined as subdivision(curve, n, 0), 

with n segments, connecting arcs with equal parameter  steps. 

c. Pink polylineEqSides, defined as subdivision(curve, d), 

with segments of equal length d, except maybe the last one. 

d. Dark green polylineZigZag, defined as polyline(curve, divergence, c, 1),  

with c segments, whose ends are divergence  far from the curve. 

e. Red polylineWild, defined as polyline(curve, divergence, 50/divergence, 1),  

with 50/divergence segments, whose ends are divergence  far from  the curve. 

 

The left image in Fig.8 shows polygonal chains a), b), c), and the right one – chains d), e). The bottom-

left table presents the proper values of parameters, and the values of lengths expressions are presented 

in the bottom-right one11.  

Students pay attention that: 

 

 The polygonal chains a) – c) present different approximations of the curve. 

Their length increases but is limited by the curve length, when the amount of their segments 

is growing (by increasing the value of n parameter (polylines a), b) or decreasing the value of 

d parameter for polyline c)).  

                                                           
11 It is up to educator to include expression length(curve) and/or polylineEqArcs in the model.  
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Figure 9 

 The length of both polygonal chains d) and e) is bigger than the curve length. 

Both these polygonal chains are approaching to the curve when decreasing the value of 

parameter divergence. 

 The length of polyline d) decreases and approaches the curve length, when decreasing the 

value of divergence but increases back if c increases (Fig.9).   

 The length of polyline e) remains almost unchangeable, when decreasing the value of 

parameter divergence (Fig.9). 

 

Analyzing these observations, students find an analogy with the case (1.2) of the circle length and 

come to the conclusion that only a certain class of polygonal curves can lead to the concept of curve 

length. An approximation to  the curve alone is not enough12. 

 

 

2. Surface Area  

By analogy with a circle, we construct an approximation of a sphere by polyhedra (model M8). 

Parameter subdiv presents the stage of approximation. As an initial approximation, we take an 

icosahedron with vertices on the sphere (subdiv = 0). Each step of approximation is a polyhedron 

obtained from the previous one in the following way: 

a. The middle points of the edges are projected centrally onto the surface of the sphere. 

b. The set of points, which consists of points-projections and existing vertices, is the set of 

vertices of the new polyhedron. Its edges join pairs of nearest vertices, and its faces are regular 

triangles with sides-edges. 

                                                           
12 As always, it is possible and useful to redefine the original curve, making sure that all “broken” and discussed 

properties are preserved. 
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The upper row on Fig.10 confirms the fact that these polyhedra13 do approach the surface of the 

sphere. 

          

          

Figure 10. From left to right subdiv = 1, 2, 3, 4, 5. 

Let us modify these polyhedra by erecting right tetrahedrons on their triangular facets. 

The second parameter – thorn – in M8 defines the angle of a slope of the pyramid's apothem to the 

base plane. 

The lower row on Fig.10 shows the polyhedra corresponding to thorn =  /10. These polyhedra approach 

the surface of the sphere too. Denoting area by letter S we have 

 

Therefore, the surface area of the polyhedron with spikes is 
)

1

os (c thorn
 times bigger than without them. 

Students meet here a situation that similar to (1) in the section 1.2… 

This was expected: not all vertices of the polyhedron lie on the surface of the sphere. But it is not 

enough. An attempt to determine the surface area by analogy with the length of a curve as the limit 

of the area of an inscribed polyhedron with all vertices lying on the surface and faces, whose area 

tends to zero, turns out to be unsuccessful.  

A famous counterexample was constructed by Hermann Schwarz in 1892 and got his name 

“Schwarz boots” because of its similarity with the wrinkled boots. Fig.11 shows model M9 of 

Schwarz boots – a polyhedral surface inscribed into cylinder with radius a, height zMax – zMin of the 

viewing volume and axe z as its axis, standing on the xOy plane (zMin = 0). 

                                                           
13 With vertices on the surface of the sphere and diminishing faces. 
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Figure 11 

Fig.12 shows process of construction of the polyhedral surface, controlled by parameter tik (first nine 

steps a) - b) correspond to tik = 0...9). Here emphasized is the construction mechanism of the initial 

(red) triangular facet (d); construction of the complementary yellow facet as symmetric (e) and then 

rotated by an angle /n (f). The section fulfilled by rotation of this pair of triangles is given by an 

angle 2/n (g, h).   

Each following section is rotated relative to the previous one by an angle /n. This became 

visible by the onward movement of the red initial faces (Fig.12 i) and Fig.11).  

Thus, the polyhedral surface consists of congruent triangular facets. Each such facet has14 
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14 In model M9 we use expression zMax – zMin instead of H to construct cylinder of a maximal height, 

allowed by the viewing volume. 



 The Electronic Journal of Mathematics and Technology, Volume 12, Number 3, ISSN 1933-2823 

363 

 

          
                    a)                                                b)                                            c)                           

                 
                          d)                                                e)                                              f) 

              
                           g)                                               h)                                               i) 

Figure 12 

Therefore, the surface area is 2

2
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If m and n are growing infinitely and independently, then the sizes of triangles tend to zero but the 

area  nk ,  does not have a limit. 

If m and n are growing in such a way that 
2
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
  . 

This limit depends on b: for b = 0, i.e. n while k is fixed, it equals to 2πaH in accordance with 

the well-known formula. In other cases, it is larger and can be infinity or equal to an arbitrary number. 

Thus, the Schwarz boots explains the inapplicability of the approach to determining the surface S area 

through the sum of the areas of the contracting faces of a polyhedral surface with vertices on S. 
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Students explore these facts by changing parameters n and k. In particular, they redefine k by 

bn2, set the value of b, and change the value of n, paying attention to the changing values of 

expressions in the expression/condition window. 

3. Continuity, Differentiability and Extrema 

In 1872, Karl Weierstrass first published an example of everywhere continuous but nowhere 

differentiable function. This counterexample has ruined the accepted opinion that every continuous 

function is differentiable except on a set of isolated points. 

Weierstrass Function (further: WF) is defined as 

 
0

( ) cos( )n n

n

f x a b x




 ,                                           (2) 

where 0 < a < 1, b is a positive odd integer, and 1 3/ 2ab   . This significant fact is depicted on a 

post stamp, dedicated to Karl Weierstrass (Fig.13).  

   

Figure 13 

Model M10 presents a graph of WF. Fig.14 shows the idea of its construction, based on initial 

function f1: y = cos x. Each summand in (2) is a function y=a
n

f
1
(b

n

x). Fig.14 a) display its graph, 

when n = 0, and b), - when n = 1. Here a = 0.6, and b = 11.  Fig.14 c) shows graph of their sum 
1

0

cos( )n n

n

y a b x


  together with graph of 
0

0

( ) cos( )n n

n

f x a b x


 . Generally, M10 shows both 

graphs:
1

0

cos( )
k

n n

n

y a b x




  in brown and 
0

cos( )
k

n n

n

y a b x


  in green15, depending on the finite 

value of parameter k as amount of summands in (2).  

          
a)                                                                   b) 

                                                           
15 In VisuMatica this expressions supported by the following syntax: y=Sigma(anf1(bnx),n,0,k). 
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c) 

Figure 14 

Exporation of this model includes two types of activities: 

1. Increasing the value of parameter k (Fig.15 1st row). 

2. Zooming to view definite regions of the graph (Fig.15 2nd row, both images with  k = 10). 

As result, students discover the self-similarity of the graph, and after deep zooming - its similarity to 

the graph with low-valued k parameter16, e.g. Fig.14 c).  

 

      
k = 5                                                           k = 10 

   
 

Figure 15 

                                                           
16 While proper zooming pay students’ attention to the viewed x- and y-interval (Fig.15 right). 
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The continuity of 
0

( ) cos( )
k

n n

k

n

f x a b x


 becomes visible. One can prove the continuity of its limit – the 

WF, using the concept of uniform convergence of a sequence of functions17, Weierstrass M-test18, and 

the uniform limit theorem19. To do this, it is sufficient to note that 

0 < a < 1. Hence, an < 1, being the amplitude of the summands, forms a decreasing geometric 

progression. 
0 0

| cos( ) |
k k

n n n

n n

a b x a
 

  and
0

1

1

n

n

a
a





  


 . Therefore, WF converges uniformly on 

R. Consequently, it is continuous. 

The role of the parameter b in the argument’s expression of fk(x) is clear and confirmed by 

varying of its value: the coefficient bn makes the period of the function of the leading term equal to

2
nb

- the tightness of the graph’s bursts. However, the meaning of condition 
3

1
2

ab   is difficult 

to elucidate experimentally. Observation of model’s behavior, while varying values of both 

parameters a and b, allows only to note that there really exists a certain relationship between them, 

which determines the nature and steepness of the bursts right up to their vanishing. 

Unfortunately, the smooth zoomed images - like in Fig.15 (right in the 2nd row) – disturb to 

“see” the lack of WF differentiability. The formal proof includes rather cumbersome and non-trivial 

computations and argumentations20 [10], [11]. We can make the bursts of graph sharp by replacing 

the initial function y = cos x, by another one, whose graph will be similar to the graph, shown in Fig.1, 

and extended to the whole R. 

The geometric construction with polyline, used in M1, is unacceptable since the number of 

segments in the polyline must be finite. Moreover, it is does not compatible with sigma expression. 

Finding the right function becomes an interesting challenge for students. 

Consider y = |{x-0.5}-0.5| as an example of such a function21. This function is especially fascinating: 

it provides an example of a transformation of a noncontinious function with infinite amount of 

isolated gaps into a continuous one.  

VisuMatica includes a “Steps” mechanism, which allows one to trace the process of its 

formation and application. Model M11 includes the following functions: 

 f1(x)={x}, 

                                                           
17 We say that sequence of functions {fn} defined on a set E converges uniformly to function f on E if

  |)()(:|)(,),(,0 xfxfNnExN n  

18 Weierstrass M-test. If {fn} is a sequence of functions defined on a set E, that there is a sequence {Mn} 

satisfying 
1

1, :| ( ) |n n n

n

n x E f x M M




          then the series 
1

( )n

n

f x




  converges uniformly on E. 

19 The uniform limit theorem: The uniform limit of any sequence of continuous functions is continuous. 

 

20 Including condition 
3

1
2

ab    

21 We denote the fractional part of a real number x by {x}  

https://en.wikipedia.org/wiki/Uniform_convergence
https://en.wikipedia.org/wiki/Uniform_convergence
https://en.wikipedia.org/wiki/Uniform_convergence
https://en.wikipedia.org/wiki/Continuous_function
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 f2(x)=f1(x-0.5), 

 f3(x)=f2(x)-0.5, 

 f4(x)=|f3(x)|, 

 f5(x)=sigma(anf4(b
nx),n,0,k-1), 

 f6(x)=sigma(anf4(b
nx),n,0,k), and parameters a, b, and k. 

Initially, graphs of all the functions except f1(x) are invisible; a = 0.51, b = 4, and k =2. Fig.16 displays 

the “Steps” dialog box. Its list includes names of graphing objects, e.g. functions, and variables. Step-

by-step processing of the list: 

 makes objects of the active step (emphasized in red) visible and hides the rest. 

 Assignes definite value to parameters and respectively redraws the current scene. In case 

of loops (see the line “k:=3..7”) the assignment executes sequentially.  

Fig.17 shows results of steps execution: a) – f) steps 1 – 6 respectively,  g) – step 7 with  k = 3, h) – 

step 7 with k = 7. While zooming students discover the self-similarity of the graphs like in Fig.15. 

Consider f6(x)=sigma(anf4(b
nx),n,0,k). It is continuous as a sum of a finite amount of 

continuous summands (Fig.18). As in case of WF, if we require 0 < a < 1. Then an < 1. Fig.17 d) 

illustrates the fact that |f4(x)| = |{x-0.5}-0.5|  0.5. 

 

Figure 16 

We can see that 6
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1

n

n

a
a





  


 . Therefore, the 

sequence f6(x) converges uniformly on R. Consequently, its limit F is a continuous function. As in 

case of WF, parameter a defines the amplitude of summands, and b – their period. We confine 

ourselves to considering only even b to ease the farther observations, especially, the visual ones. 

As a result of studying the shapes of summands, students note that they include an infinite amount of 

regularly distributed sharp minima and maxima, which converges to a countable dense subset of R. 

In these points summands do not have derivative.  

https://en.wikipedia.org/wiki/Uniform_convergence
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a)     e)  

b)     f)  

c)    g)  

d)   h)  

Figure 17 

       
Figure 18. Graph of summand anf4(b

nx), if a=0.51, b = 4, n = 0, 1, 2, 3 from left to right 

Fig.19 illustrates the process of summation. Students pay attention to the location of break points of 

the last summand y=akf4(bkx) (the magenta line) in relation to the previous sum (the brown line), and 

the sum f6(x) (the green line). They remain in place in all subsequent steps.  

        
             k = 1                             k = 2                            k = 3                 k = 3 zoomed in     

Figure 19. a=0.51, b = 4 
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We want to ensure the lowest slope’s modulus of the sum of k summands (red arrows in Fig.19) to 

be bigger than the lowest slope’s modulus of the sum of k -1 summands (blue arrows in Fig.19). It 

will guarantee preservation of minima and maxima of the last summand (k) in the result of addition22.   

The main experiment with this model is the search for a relation between the parameters a and b, 

if any, that ensures the preservation of extrema. Students are invited to: 

1. Successively double the value of parameter b, and then 

2. By varying parameter a and, if necessary, by zooming23, to determine its critical value a' (if 

exists at all) - i.e. a value that for a < a' the minimal slope of the sum decreases, while for a 

> a' it increases. 

3. Check the independence of a’ from the number k of terms. 

Making sure that a' really does not depend on k, students discover the following pairs: b=4, a’=0.5; 

b=8, a’=0.25; b=16, a’=0.125 and easily notice that a'b = 2, and, therefore, the condition of increasing 

is ab > 2. 

They check this guess by assigning different even values to b and setting
2

a
b

 . The graph of f5(x) 

and f6(x) receive a proper shape: the lowest slopes coincide. This fact follows from the collinearity of 

the corresponding segments: green is a continuation of brown24 as it emphasized in Fig.19 by arrows. 

As a result, it can be affirmed that the set of sharp breaks of the function F is everywhere 

dense on R, and therefore the function is not differentiable at these points. In an arbitrarily small 

neighborhood of any x∈R there are increasing segments with a slope of at least 1, i.e. 1
y

b





, and 

decreasing, with a slope of not more than -1, i.e. 1
y

b


 


. Thus, the 

0
lim
b

y

b 




 does not exist, and hence 

the function F is nowhere differentiable. Students pay attention that the function F, being continuous, 

has a dense set of extrema. This would be impossible if F would be differentiable. 

Replacing y = cos x by y = 4|{x/(2)}-0.5|-1 as f1(x) in the definition of WF, we transform the WF 

into a representative of the function F  (Fig.20: left - WF, right - F). 

Short history 
It is worth noting an interesting connection between authors of the mentioned counterexamples. Here 

one can not do without another outstanding mathematician - Giuseppe Peano. It was he who 

discovered the first example of a space-filling curve (1890). David Hilbert proposed his curve in 1891 

as a variant of Peano curve. In 1882 Peano independently from Schwarz also discovered the Cylinder 

Area Paradox. It was the his first result in Calculus. When Peano told this to his teacher Angelo 

Genocci he informed him that already in 1880 he received a letter from Hermann Schwarz describing 

this discovery. Schwarz had officially published his counterexample only in 1890.25  

                                                           

22 The arguments of the extrema of the summand k include all the previous ones. 
23 VisuMatica supports user-friendly proportional zooming around any point of the viewport. 
24 Odd b also fits. The segments just become parallel instead of be collinear.  
25 One more link: Karl Weierstrass was the teacher and PhD advisor of Hermann Schwarz. 
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Figure 20 

Conclusions 
The above examples show a wide range of possibilities and helpfulness of studying various 

mathematical topics with application of counterexamples. At the same time a proper educational 

software allows to visualize and explore this contents and ensure its active assimilation. 

Supplementary Electronic Materials 

Videos with animations: https://sites.google.com/view/counterexamples-in-mathematics 

VisuMatica in a configuration that supports the above modeling is under construction. 
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